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Dipole and current fluctuations in the quantum 
one-component plasma at equilibrium 

Ph A Martin and Ch Oguey 
Ecole Polytechnique Fedtrale de Lausanne, Institut de Physique Thiorique, PHB-Ecublens, 
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Received 17 December 1984 

Abstract. By an analysis of the current and dipole mean square fluctuations per unit volume 
for a quantum mechanical jellium in thermal equilibrium at temperature @ - I ,  we give a 
new proof of the sum rule {dx/xI2S(xj  = i ( h w , / n j  coth(@hwp/2j for the second moment 
of the charge-charge correlation function S(x) ,  where up is the plasma frequency. No use 
is made of perturbation theories. The proof relies on correlation inequalities and sum rules 
which are valid in phases of charged systems having good screening properties. 

Up to second order in Planck's constant, the current-current correlations have a 
non-integrable spatial decay even when the corresponding classical state shows Debye 
screening. 

1. Introduction 

In a recent work [l], correlation inequalities were used to determine the value of the 
bulk momentum fluctuations in a quantum mechanical system of density p in thermal 
equilibrium at temperature T.  It was shown that the mean square momentum fluctu- 
ations by unit volume equal mpka T (the classical equipartition law) whenever the 
potential is short ranged and the correlations have a sufficiently fast spatial decay 
(L'-clustering). 

In this paper, we extend this analysis to the quantum mechanical one component 
plasma (OCP) of particles with charge e and mass m in a neutralising background of 
density p (OCP).  Quantities of interest in a charged system are the total dipole D = C, ex, 
and current J = C, ( e /  m ) p , ,  and their equilibrium fluctuations. These fluctuations can 
be calculated on the basis of the following heuristic remark: in the OCP, D and J are 
respectively proportional to the coordinate X = C r  x, and momentum P = C, p ,  of the 
centre of mass of the whole system. Since the centre of mass decouples from the 
relative coordinates, it will only be subjected to the harmonic force -mw;X (up= 
(47re2p/ m)"' = plasmon frequency) due to the charged background. We therefore 
expect that X and P will behave as the canonical variables of a macroscopic quantum 
oscillator of energy (2m)-'( P 2 +  m 2 w ; X 2 )  and will be distributed accordingly in thermal 
equilibrium. Thus the equality of potential and kinetic energy for an oscillator leads 
to ( J 2 )  = wi(D2)  and the mean square fluctuations of the dipole by unit volume are 
lA/-'(D2) = (1/8rr)hw, coth(phwP/2). 

The point of this paper is to give a precise version of this argument by means of 
correlation inequalities which characterise thermal states of infinitely extended systems. 
Clearly the result will not be true for a finite system, where boundary conditions have 
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to be taken into account and the ( x i , p I )  do not obey the canonical commutation 
relations, but can only hold asymptotically in the thermodynamic limit. We take the 
same point of view as in [I]: we assume that we are given an infinitely extended system 
in terms of its reduced density matrices ( R D M )  (we do not prove the existence of the 
RDM for Coulomb systems, this can be done in some cases [2]), and the thermal 
equilibrium is characterised by the energy-entropy balance correlation inequalities 
[3,4] (see appendix 1 for an elementary derivation of this inequality). With the help 
of appropriate cut-off functions, we define the local dipole and current of a finite 
region A of this infinite system. We then show that as A + R3, these quantities behave 
indeed as the variables of a single quantum harmonic oscillator with frequency wp. 

When we express the dipole fluctuations in terms of the structure function S(x) of 
the OCP (the static charge-charge correlation function), the result is also formulated 
as an exact sum rule for the second moment of S(x) (formula (4.1) of proposition 2). 
This sum rule can also be obtained in the framework of the linear response theory 
noting that, in the long wavelength limit, the imaginary part of the inverse dielectric 
function E-'(k,  w )  (e.g. calculated in the RPA approximation) is peaked at the plasmon 
frequency, i.e. limk,,, Im E - ' (  k, w )  = -in( 6 ( w  - up) - 6 ( w  +U,)) [j, 61. This, combined 
with the standard relation between E(k,  0) and the structure function S(x), leads to 
the sum rule of proposition 2t .  Our results, obtained by a completely different method, 
confirm that the above behaviour of Im E - ' (  k, w )  as k + 0 is exact, a conclusion which 
is usually to be inferred from the fact that it saturates the frequency sum rules [5,6]. 

As h + 0, (4.1) reduces to the familiar Stillinger-Lovett second moment condition 
expressing the perfect shielding in a classical plasma [7]. 

Our proofs rely on certain spatial cluster properties of the RDM which express the 
screening effects in charged systems. These properties are described in § 2 where the 
general formalism of infinite quantum states is briefly recalled. Although these proper- 
ties have not yet been rigorously proven in the quantum case (see [8] for classical 
systems), we expect them to hold at least in the homogeneous phase at sufficiently 
high temperature. In particular, we assume that the truncated charge-charge correla- 
tions have sufficiently fast decay properties (integrability of second moments) and that 
the electrostatic charge and dipole sum rules, and an off-diagonal sum rule established 
in [9], are valid. However, as seen from the h-expansion (appendix 2), the velocity- 
velocity correlations are not expected to be integrable in quantum Coulomb systems. 
Consequently, the current-current fluctuations can only be defined by conditionally 
convergent integrals. This implies that we have to make a special choice of the cut-off 
functions (associated here with cylindrical regions) and to remove the cut-offs by taking 
limits in the appropriate order. 

The results for the OCP depend essentially on the fact that in this system the charge 
current is proportional to the mass current. This is no more true in multicomponent 
systems made of several species of masses m, and charges e,: the analysis cannot be 
generalised there in a straightforward manner. The equality of dipole and current 
fluctuations (up to a factor involving the individual plasmon frequencies) remains true 
(see § 3) ,  but no simple expression has been found for the second moment of the 
charge-charge correlation function. It can however be checked that, using the methods 
of [ 13, the mean square momentum fluctuations of a multicomponent system (without 
background) satisfying suitable cluster properties are still given by the classical law 
E, T. 

t We are indebted to B Jancovici for pointing out to us this derivation of the formula (4.1) 
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In the last section, we consider a system of particles in a constant magnetic field 
in the 3-direction. By an analogous use of the correlation inequalities, the 1-2 com- 
ponents of the total velocity are shown to behave as the variables of a quantum oscillator 
of cyclotronic frequency wB = eBm-' and to have the corresponding thermal averages. 

2. General setting 

2.1. The local observables and the state 

We recall the local description of an infinitely extended quantum mechanical state. 
For simplicity, we consider one species of particles without internal degrees of freedom. 
The setting is the same as that given in 3 2 of [l] .  

Let X =  Z2(R3)  be the one particle space. The local observables of a particle consist 
of the *-algebra 2l generated by the operators of the form R(p)f (q)  where R is a 
polynomial in the momentum p and f is a infinitely differentiable function of the 
position q, with compact support. Here q r  = x r  and p r  = -ih a/axr ( r  = 1,2,3)  are the 
usual Schrodinger representation of position and momentum on Z2(R3) .  A local 
observable of an n-particle system is an operator A(1,. . . , n )  belonging to the sym- 
metrised tensor product = A(1,.  . . , n )  acts on e", the properly 
symmetrised (+) or antisymmetrised (-) n-particle space. A local observable A of the 
infinite system is a sum A = C, A, of n-body operators where only a finite number of 
A,, are different from zero. An n-body operator can be formally represented in second 
quantised form by 

A, =- d x , .  . . dx, dy, . . . dy,(x,. . . x , / A ( l . .  . n)ly, .  . . y n )  
n !  ' I  

x a + ( x l ) .  . . a+(xn)a(yn) 9 .  * a ( ~ 1 )  (2.1) 

where (x, . . . x, lA( l . .  . n ) ( y ,  . . , y,,) is the kernel of A ( 1 . .  . n )  in the configuration 
representation and the a'(x), a (y)  satisfy the canonical commutation relations 

[ a ( x ) ,  a'(y)l- = S(x-yY), Ca(x), U(Y)lT = 0. (2.2) 
As a result of the Wick ordering of the creation and annihilation operators, a product 
AB can again be written as a sum of n-body operators of the form (2.1). This defines 
the product rule in the algebra of local observables. 

The state ( . ) of the infinite system is given in terms of its reduced density 
matrices p ' " )  (positive operators on en) with kernels formally written as 

(2.3) (vi 9 1 * ynlp'n'lxl . . xn)=(a+(xI)  . a+(xn)a(yn) * .  . a(y1)). 

The average of a n-body operator is then (set (x),  = (xi  . . . x,)): 

=L n !  j cl(X),,((X)"lA(1 . . . n)p'"'l(x),). (2.4) 

When A belongs to ? I i n ) ,  the kernels ((x),,lA(l . . . n)I (y ln )  have to be understood in 
the sense of distributions, and the functions ((y) , \p 'n)~(x) , )  are assumed to be infinitely 
differentiable in x and y. Hence the average (2.4) is well defined for A E %("), 
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The ( ( ~ ) , , ~ p ( ~ ) ~ ( y ) , , )  have the symmetry under the permutations of the arguments 
induced by the representation (2.3) and the statistics. Moreover, the state is translation 
invariant if 

( x , + z . .  . xn+Zlp'" ' lyl+z. .  .Un+Z)=((X), lp(n) / (y)n)  (2.5) 

(Rx, . . . Rx,/p'" ' /Ryl . . . Ry,) =((x),lp'"'\(y),) 

for all z € R 3  and rotation invariant if 

(2.6) 

for any rotation R of R3. 

equivalently if 
Finally the state is time-reversal invariant if ( ( ~ ) ~ l p ( " ) I ( y ) , , )  are real, or 

( 4 A ) )  = (A+) V local A, (2.7) 

where T is the time-reversal operation: T( p )  = - p ,  T (  q )  = q. 

2.2. Equilibrium states of Coulomb systems 

The Hamiltonian of a one-component Coulomb system is formally defined by 

H = T + U  (2.8) 

T = d x  dy(xl lp12/2m(y)a'(x)a(y) (2.9) 

(2.10) 

5 
I U = $  d x d y  : Q ( x ) + ( x - y ) Q ( y ) :  

where Q(x)  = e(a ' (x)a(x)  - p )  is the charge density, -ep the density of a uniformly 
charged background Cjellium system), and 

4 ( x )  = lxl-l++s(x),  (2.11) 

43 is a finite range potential. The dots mean Wick ordering, 

Moreover, they are locally neutral i.e. 
The states that we shall consider are translation, rotation and time-reversal invariant. 

(Q(x))  = e((xlp"'lx) - p )  = o (2.12) 

and they are assumed to satisfy the following cluster property with respect to the charge 

(2.13) (Q(x )a+(x l )  . .  . a+(xn)a(yl)  * .  . a ( y n ) ) = ~ ( / x l - ' )  

for fixed x1 . . . xny, . . . y ,  and some 77 > 3. Other types of cluster properties are discussed 
in 0 2.3. 

An equilibrium state at inverse temperature /3 will be characterised as follows. It 

( [ H ,  AI) = 0 (2.14) 

is stationary under time evolution 

and verifies the correlation inequalities [3,4] (see appendix 1) 

(2.15) 

for each local A. 
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Because of the long range of the Coulomb potential, [ H ,  A] is not local. However, 
for the states having the cluster property (2.13) the left-hand sides of (2.14) and (2.15) 
are well defined. It is easy to check that [ T, A] is local. Moreover, if A and B are two 
operators of the form (2.1), we write explicitly 

+ e  c [ dx(dJ(x, - x )  - 4(yz -x))(B:Q(x)a+(x,)  . . . a(yl) : )  . (2.16) ) 
The condition (2.13) implies that (B:Q(x)a+(x,)  . . . a(yl):)  = O(\x\-") for fixed 
x, . . . x,yl . , . y ,  and any local B, showing that the x integral occurring in the last term 
of the right-hand side of (2.16) is absolutely convergent. For any local B, by using 
Wick ordering, (B:Q(x)a+(x,)  . . . a'(x,)a(y,) . . . a(yl) : )  can be expressed ih terms of 
reduced density matrices as a sum of averages of the type (2.4). 

When A and B are one-body operators, we find explicitly 

( 2 . 1 7 ~ )  

+ e2 1 dx, dx, d ~ ~ ( x , x ~ x ~ I ( p ' ~ ' -  p'2 'p '1 ' )B(  1)[4(23), A(2)1\x1x2x3) 

(2.17b) 

with c # ~ ( k l ) = @ ( q ~ - q , ) .  (2.16) and (2.17a, b)  will be taken as definitions for the 
left-hand side of the inequality (2.15). 

2.3. Cluster properties and sum rules 

In the following we shall only consider homogeneous phases of the OCP having good 
screening properties. The RDM of such phases have cluster properties and obey sum 
rules typical for charged systems, which we now describe. 

For notational convenience we introduce the density and momentum correlations 

( n )  r ( n )  r ( P  PI: . . . P::)(Xl . . * xn-1) =(XI . * . xn-1, OIP PI: . . . P',:IXl . . . xn-1, 0)  

rl = 1,2,3,  i, = 1, .  . . , n, s = 0 , 1 , 2 ,  . . .  

and distinguish between the density-density, momentum-density and momentum- 
momentum correlations. 
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The density-density correlations are assumed to have fast cluster properties as in 
the classical case. More specifically, we assume 

(2.18) 

(2.19) 

where (&))(x, y )  is the fully truncated three-point function defined in the usual way. 
We also assume that the momentum-density correlations are integrable? 

(2.20) 

(2.21) 

The momentum-momentum correlations have, however, a slow clustering of the type 

( i i i )  (p'2'p;p;)(x) = c(d2/dx' ax")(lxl-') + O ( / X ( - ~ - ' )  E > O .  (2.22) 

These cluster properties, although not rigorously proven, are in agreement with the 
behaviour of the quantum h2 correction to the classical limit (see appendix 2). 

Moreover, the RDM obey the following sum rules expressing the shielding of a 
particle in the OCP at equilibrium. They are the charge sum rules 

dx((p'*))(x) - p ' )  + p = 0 (2.23) 

(2.24) 

J 
[ d x ( ( ~ ' ~ ' ) ( x ,  Y 1 - P(P'*')(Y 1) + 2 ( p ' 2 ' ) ( ~  1 = 0 

the dipole sum rules 

dxX'((p'*'j(X-y)-p2)+yp = O  

and 

(2.25) 

(2.26) 

For states having suitable cluster properties, these sum rules can be shown to be a 
necessary consequence of the equilibrium equations obeyed by the RDM [9]. We shall 
assume here that (2.23)-(2.26) hold and refer to [9] for their derivation. Equations 
(2.23)-(2.25) are the exact analogue of the charge and dipole sum rules discussed in 
[ 10, 113 for classical charged systems, whereas (2.26) has no classical equivalent. 
Equation (2.26) is a particular case of the off-diagonal sum rule established in 
[9, equation (3.2)]. 

t Notice that because of the rotation invariance of the state one has (p ( ' lp : )  = 0, ( p " ' p ; p ; )  = 6,s( p("( p')'). 
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3. Dipole and current fluctuations 

In this section, we show that the mean square dipole and current fluctuations are 
proportional, the proportionality factor being the square of the plasmon frequency. 
This holds in any stationary state having the properties given in § 2.3. 

With the help of cutoff functions f and g (f and g are infinitely differentiable 
functions with compact support), we first define the local current J ;  and dipole D i  
( r  = 1,2,3) associated with bounded space regions. They are one-body observables 
defined respectively by ( e / 2 m ) (  p ' f (  q )  + f ( q ) p r )  and eq'g(q) ,  and are formally written 
as 

dx  dY(X It( p 'f + f P  ) I Y k  + ( x 1 a (Y  ) (3.1) 

DL = dxx'g(x)Q(x) .  5 (3.2) 

We choose f and g as smooth characteristic functions of a cylinder A of radius R 
and length 2 L  along the r axis. Setting x = (xr, 2 ' )  where 3' is the part of the vector 
x orthogonal to the r direction, we define 

4 4 s )  = h ( s / L )  

where h ( s )  has compact support and satisfies 

h ( s )  = h ( - s ) ,  

$ 5  ds(sh ' (s))*=t  ds[(sh(s))']'= 1 

h ( 1 )  = 1 

5 

(3.3) 

(3.4) 

(3.5) 

The prime denotes a derivative. 
For the sake of conciseness we shall not indicate the R, L dependence of f  and g, 

and we simply write J;= J k  and DL = 0;. It will always be understood that J ;  and 
D'\ are the current and dipole associated with the cylindrical region A and the cutoff 
functions (3.3)-(3.4). 

We notice that ( J ; )  = 0 and (0;) = 0 by time-reversal and space reflexion invariance. 
In the lemmas 1 and 2 below, we show that the mean square fluctuations by unit 

volume of J'\ and 0; are well defined and express them in terms of the momentum- 
momentum and density-density correlations. 

Lemma 1 .  Under the clustering assumptions (2.18) and (2.22) 

lim lim lAl-1((Jk)2)= (AJ')' 
L-m R-ac 
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exists with 

(AJ')'= (elm)'( ( p " ' ( p ' ) ' ) +  [ dx' [ dP'(p"'p:p;)(x)). (3.6) 

Proof: The proof is similar to that of lemma 3.1 of [ 11, with some care due to the long- 
range velocity-velocity correlations. We first work out the average ((.I;)') by using 
Wick ordering to express it in terms of the reduced density matrices. Using also the 
time-reversal invariance as in [ I ]  we get 

( m/e)'/Al-'((Ji)2) = (p(''pr2)lA1-' f ( x )  dx  (3.7) 

With our choice (3.3) o f f  we clearly have 

lim lim 1AI-l f2(x)  dx = 1. 
L-m R + X  1 

Notice that by the assumption ( 2 . 2 2 ) ,  

( p ' 2 ' p i p ; ) ( x r ,  z') = 0((xr2+ 12r12)-3/2) 

is integrable in 2' for fixed xr. Moreover, since 

for x r  # 0, 
d2 1 d X r z  lx$' = -47rS(xr) = 0 

1 df'(p'2'pip;)(xr, Z r )  is still integrable in xr. Thus the contribution (3.8) 

tends to 1 dx' dP'(p'"p~p;)(x) by dominated convergence as we first let R --*a: and 
then L+ CO. Finally the terms (3.9) involving V'f(x) = (V'cp(x'))x(X') are O ( L - ' )  
uniformly in R and therefore vanish in the limit L, R + CO. 

Introducing the charge-charge correlation function 

S ( X - Y )  = ( ( a x )  -(Q(x)))(Q(Y) - - ( Q ( Y ) ) ) )  

= e Z ( ( p " ' ) ( x - y ) - p 2 + S ( x - y ) p )  (3.10) 

we show that the dipole-dipole fluctuations are well defined as a consequence of the 
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electroneutrality sum rule (2.23), which implies 

dx xS(x) = 0. I dx S(x)  = 0, I 
The second relation follows from rotational invariance. 

Lemma 2. Under the conditions (2.18) and (2.23) 

exists with 

(AD')'= -a  dxlx12S(x). I 

2003 

(3.11) 

(3.12) 

Proof. We have by the definition of S(x) 

x (  ( rR ' ) - '  I dg'X(n'+g')X(J')). (3.13) 

Since S(x)  has finite first and second moments, dominated convergence allows us to 
take the limit R + a: 

4 = 5 dxS(x)(  (2L)-' 5 ds(x '+s)$(x '+s)s+(  

= I dx S(x)iL2 [ ds y(  s + x'L-') y(  s). (3.14) 

The scaling property of $(s)  has been used and y ( s )  = s h ( s ) .  Introducing the limited 
Taylor expansion ( 0 6  0 s 1) 

Y ( S  + x'L-') = Y ( S )  + X ' L - ' Y ' ( S )  ++(X'L-~)~Y"(S + exr,!-') 

in (3.14) leads, with the sum rules (3.11), to 

lim lim /Al-'((D;)') 
L - m  R-m 

= lim f dx(xr)2S(x)  f ds y" (s+  OxrL-')y(s) 

= i  I ds y " ( s ) y ( s )  dx(x')2S(x) 

= -: [ dxlx12S(x) 

L-CS I I 
I 
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where we have used (3.5) 

f 1 ds y"(s)y(s) = -; ds(y ' (s))2= -1 .  i 
The main result of this section is formulated in the following proposition. 

Proposition 1 .  If the state has the properties given in 0 2.3, one has 

( A J r ) 2  = w;(AD')' 

with wp = ( 4 ~ p e * / m ) " ~  = plasmon frequency. 

Pro05 The equality (3.15) follows from the identity 

(3.15) 

( J X H  Oil) + ([H, J i lD2  = ([H, J P i ) I =  0 (3.16) 

which is a consequence of the stationarity (2.14) of the state. We compute the terms 
of (3.16) in the limit L, R + CO (the limit R -+ CO being taken first). Details are given in 
appendix 3. 

Writing H = T +  U ( T  = kinetic energy, U = potential energy), we see that the 
commutator 

[H, D i ] = [ T ,  D i ]  = -ihe(2m)-' dx dy(x)p.V(q'g)+V(q'g) -ply)a'(x)a(y) 

(3.17) 

is a local approximation of the current. Thus, removing the cutoffs by taking the limit 
R + cc first, we find, as in lemma 1,  that the first term of the left-hand side of (3.16) gives 

(3.18) 

Working out the kinetic energy part of the second term in the left-hand side of (3.16) 
gives? 

5 5  

lim lim ifi-'lAl-'(Ji[H, D i ] )  = (AJ')2. 
L - r w  R-m 

(3.19) 

This quantity vanishes as a consequence of the off-diagonal sum rule (2.26). 

iK'[AI-'([ U, Jk lDi )  

The potential energy part can be split into two contributions 

=pe*m-' I dx 1AI-l I dzf(z)(z+x) 'g(z+x)  

XV' J dY 4 ( X - . Y ) S ( Y )  (3.20) 

- e4m-'lA/-' 5 dx, dx2 dx, r(x,x2x,)(Vr~)(x,  - x2)f(xl)x;g(xz) (3.21) 

r(xIx2x3) involves the three-point function, and it is shown in appendix 3 that 
(3.21) vanishes as L, R + w  because of the dipole sum rule (2.24). 

't Notice that by time-reversal invariance ( D k [ H ,  Ji])  = ([If, J'JDL). 
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To find the limit of (3 .20)  we note that 

lim T-' R-' 5 df 'x (  Zr)x(Zr + Z') = 1 ,  
R-cc  

lim 1AI-l dzf(z)(z+x) 'g(z+x)  
R - m  

= ( 2 L ) - '  d z ' c p ( z ' ) ( x ' + z ' ) i , b ( x r + z r )  5 
= fL ds cp ( Ls)  ( s + x'L-') h ( s + x'L-')  

(3 .22)  

I 
i I = fL ds a( Ls)sh( s) + fx r  d s  cp( Ls)( sh( s))'( s + Bx'L-I) 

o s  e s  1 ,  

d scp ( l s ) ( sh ( s ) ) ' ( s+Bx'L-  d s ( s h ( s ) ) ' = h ( l ) = l .  
L-00 

(3 .23)  

The first term in the RHS of (3 .22)  being independent of X' does not contribute to 
(3 .20) .  We get therefore with (3 .22)  and ( 3 . 2 3 )  

= - p ( 6 m ) - ' e 2  dxIx12V2 dy + ( x - y ) S ( y )  I I  
4 r p e 2  

6 m  
- - - I dx)xI2S(x) 

= -w;(AD')'. (3 .24)  

The limit and integration by parts in (3 .24)  are justified by the fact that S ( y )  carries 
no multipole moments and hence j d y  r#~(x-y)S(y) has a fast decay (see lemma 1 in 
[ 1 2 ] ) .  Inserting (3 .18)  and (3 .24)  in (3 .16)  leads to the result of the proposition. 

Proposition 1 can be generalised to multicomponent systems. If we have several species, 
say a = 1 ,  . . . , N, with Hamiltonian H = T + U, 
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D i =  dxx'g(x)Q(x) 1 
with f and g as in (3.3), (3.4) and (3.5). 

In a procedure completely analogous 
define current correlations 

to the one followed in the OCP case, one can 

and express them in terms of RDM: 

Dipole fluctuations are given by (3.12) provided S is defined as the multicomponent 
charge-charge correlation. Then, under good clustering hypothesis, the following 
identity holds 

(J:JL,) = (o~," )~(bD' ) '  
a' 

w ;  = (47retpu/ mu)'". 
(3.26) 

It is a consequence of stationarity ( [ H ,  JL,,,Di]) = 0 and of the electrostatic sum rules 
for multicomponent systems [9]. 

4. Equilibrium dipole fluctuations in the OCP 

In the preceding section, we proved that, in a Coulomb system, dipole and current 
fluctuations are equal up to dimensional factors, both being proportional to the second 
moment of the structure function. This identity was derived from the time-translation 
invariance of the state but no use has been made, so far, of the fact that the state is 
in thermodynamical equilibrium. We now make explicit use of the inequality (2.15) 
to determine the value of the dipole (and current) fluctuations of the OCP as a function 
of the temperature. 

Proposition 2. If the state has the properties given in 0 2.3, one has 

= -: dx)x)'S(x) = (4v)-'thwp coth(4/3hwp). (4.1) I 
Roo$ Since the idea of the proof is that in the OCP the total dipole and current behave 
as the canonical variables of a quantum harmonic oscillator of frequency wp, it is 
natural to make the choice 
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in the inequality (2.15). Writing (2.15) first for the pair A, A+ and then exchanging 
the roles of A and A+ gives 

(4.3) 

We now calculate the various terms involved in (4.3) and remove the cutoffs, letting 
R + m  and then L+m. 

We consider first 

lAl-'(A,,Ai) = lAl-'(Df)+ w ~ 2 ~ A ~ - ' ( J f ) + i w ~ 1 ~ A ~ - ' ( [ ~ ~ ,  D;]) (4.4) 

and as in (A3.2), we have 

lim lim ilA/-'([J;, D;]) 
L-cc R - x  

Therefore we find from (4.5) and the result of proposition I 

lim lim IAl-'(A',A~) = 2(AD')2+ (4rr)-'hwp 
L-CO R - m  

and in the same way 

lim lim lAl-'(AiA,) = 2(AD')2 - (4rr)-'hwP. 
L-CO R-mz 

(4.5) 

(4.6) 

(4.7) 

Now, we calculate 

lb l - ' (AXK A,]) 

= IAl-'(D',[H, D',])+ w,~IAI-'(J' , [H,  J;]) 

+ iu;'IAl-'((Dk[H, J ; ] ) - ( J ; [ H ,  DJ)).  (4.8) 

It is sufficient to evaluate the first two terms of (4.8) since the last term has already 
been obtained in proposition 1 in the limit L, R + m  with the result -2hwP(ADr)'. 
(Notice that by time-reversal invariance (D;[ H, J;]) = ([ H, J;]Di)). Using time- 
reversal invariance, the first term of the right-hand side of (4.8) is 

I A ~ - ' ( D W ,  0 3  = / , \ I - ' ( D ; [ T ,  011) = - I A ~ - ' ( [ T ,  D;]D;) 

=flAl-'(rD;, [ T ,  D i l l )  

(4.9) 

Writing explicitly the integrand as 

(V ( x 'IL ( x ) ) )2x2( 2 ) + c ( x'9 ( x ) )2(  vsx (2  r ) )  

S f r  

we see that the terms involving V'x(2') for s Z r are of the order of R-' in  (4.9) and 
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do not contribute as R + CO with L fixed. Therefore, since limR+m ( r R 2 ) - '  dZ'x'(2') = 

1,  

lim lim \AI-'( D i [  H, Oil) 

Ph A Martin and Ch Oguey 

L-m R-m 

J e'p 
= h2 - lim (2L)-' dx'(V'(x'$(x')))2 2m ~ - m  

= h 2 - j  dS(sh(s))'2= h 2 w ; / 8 ~ .  (4.10) 

It is shown in appendix 4 that the only non-vanishing contribution to 
lAl-'(JL[ H, 53) is given by 

2m e 2 p  I 
e4p2 

lim lim h2 - /AI-' I dx(V'r$)(x) I dyf(x -y)V'f(y) 
t + m ~ - m  2m2 

= lim lim hep (2L)-' 5 dx' I dy'cp'(y')cp(x'-y') 
2 4 2  

L-mR-m 2m2 

x (  1 di'(V'+)(x', n')(rR2)-'  1 dyrx(yr)x(nr-j jr))  

2 4 2  

= lim hep (2L)-' dx' dy'cp'(y')cp(x' - y r )  I d2'(Vrr$)(xr, 2 ' )  
L-m 2m2 

h 2 r e 4 p 2  
lim (2L)-' I ds dt  cp'(s)cp( t - s )  sgn( t )  - -~ - 

m2 ~ - m  

lim (2L)-' I ds cp2(s) = h 2 -  2Te4p2 
m2 ~ - m  

= h 2 o ; / 8 ~ .  

In obtaining (4.11) we have used 

d f  V ' ( ( X ' ~ + ~ ~ ) - ' ' ~ )  = - 2 ~  sgn(x') I 
(4.11) 

(the field due to an infinite plane of uniform density) and that the short-range part of 
the potential does not contribute in the limit L+w.  With (4.10) and (4.11) we find 

lim IAl-'(Ai[H, A,J) = h2w;(47r)-' -2hw,(AD')' 

= -hw, lim I A ~ - ' ( A ; A ~ ) .  (4.12) 
By a similar calculation 

lim lAl-'(AAIH, A i ] )  = h*w;(4~)- '+2hw,(AD')~ 

= hw,  lim I A ~ - ~ ( A , , A ~ ) .  
Inserting (4.6), (4.7), (4.12) and (4.13) in the inequality (4.3) gives 

= phw,  
2(AD')2+hw,(4~)- '  

In( - 
2(AD')'- h w , ( 4 ~ ) - '  

(4.13) 

which is equivalent to (4.1). 
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5. Particles in a constant magnetic field 

The Hamiltonian of a system of particles in a constant magnetic field B along the 
3-axis is, in formal second quantised form, 

H = T + U  

T = dx dy f m ( x l  lu12 Iy)a'(x)a(y) s 
dx dy :a ' (x)a(x)d(x-  y)a'(y)a(y): 

(5.1) 

(5.2) 

where ur is the velocity 

U' = m-'( p1 +ieBq2), u 2 =  m-'(p2-$eBq'), 0 3  = m-lp3 (5.3) 

[U', U*] = ihm-'wB w B  = m-'eB = cyclotronic frequency. 

4(  x) is a spherically symmetric short-range potential (here the Coulomb potential 
is not taken into account: we assume sIV4(x)l d x < a ) .  

It is useful to note the following symmetries of this system. Let rr ,  r = 1,2, be the 
space reflexion operation of the r axis, i.e. r r ( q r )  = -q' ,  7rr (qs )  = q s  s # r, and 7 the 
time reversal. Then the combined operation a' = 757' leaves the Hamiltonian invariant 
but changes the sign of velocities 

a'(u ' )  = ur, r#1 ,2 .  2 2 a'(u') = -U , a ( u ' ) = - u ' ,  

We assume that we have an equilibrium state of the infinite system which is translation 
invariant (on the algebra of gauge invariant observables) and has the symmetry 
(cr'(A)) = (A+) ,  r = 1,2. Moreover, the density and velocity correlations 

have integrable cluster properties. 
Then, defining the local velocities 

,- 

U; = dx dy f(xlu'f+fu'ly)a'(x)a(y) J 
with f a smooth characteristic function of a sphere A of radius R, one proves 

and 

(5.4) 

lim lAl-'(( U,:)*) = ( p " ) ~ ; )  + dx(p'2'u:u:)(x) 

(5.6) 

The proof of (5.5) is analogous to that of proposition 1, starting from the identity 
( [ H ,  u',ufi])  = O .  Equation (5.6) is obtained from the inequality (2.15) as in proposition 
2 with the choice A ,  = u,:+iui. The details can be found in [13]. 

R-OZ I 
= (2m)- 'hw~p COth($hwB). 
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Appendix 1 

For the convenience of the reader, we give an elementary derivation of the inequality 
(2.15) for a finite quantum system with discrete spectrum. We refer to [4] for proofs 
of its equivalence with equilibrium conditions of infinite systems (KMS condition and 
thermodynamic stability). 

If H has eigenvalues A i  (repeated according to their multiplicities) with eigenfunc- 
tions pi and p = z-' e-pH, z = Tr e-PH, we have 

= P-'(Tr A+Ap) In(Tr A'Ap/Tr AA+p). 

The inequality follows from the convexity of the logarithm: for any sets of positive 
numbers { x k }  and { a k } ,  

Appendix 2 

In this appendix, we check that, up to first order in h2,  the momentum-density and 
momentum-momentum correlations satisfy properties (2.21), (2.22) and (2.26). More 
specifically, we shall use the Wigner-Kirkwood expansion to show that, if an equi- 
librium state of the OCP has good clustering and screening properties in its classical 
description, then the quantum correlations satisfy the conditions claimed in Q 2.3. 

The Wigner-Kirkwood expansion provides the quantum expectation value (A) ,  of 
a local observable A in terms of purely classical averages [14]: 

(A2.1) 

Here, ( . . . ) = limN+m ( . . . ) N  and ( . . . )N is the canonical expectation defined by the 
Boltzmann factor 

(4, = ( A )  + h2((AX) - (A)(X))  + 0(h2). 
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The correction x is given by 
N 3  

k , l = l  r , s = l  

k = l  r = l  
(A2.2) 

In the thermodynamic limit, the state ( . . . ) is described by the corresponding classical 
correlation functions p '" ' (  . . . j. Those functions are known to satisfy the following 
sum rules [lo]: 

dx&'(x,O)+p=O (A2.3) 

(A2.4) 

The following identities will be useful: the first one is obtained by explicit computation 
in the Maxwell distribution ( a  stands for a double index (:)) 

(Pa,POI2POL,Pm4)MaXW. 

3 

= , 2 p - 2  1 

if a ,  = cyz = a3 = a4 

if ( c Y I ( Y ~ L Y ~ ( Y ~ )  has two pairs of identical indices (A2.5) 

10 otherwise. 

The others follow from an integration by parts: 

Notice that for a translation invariant state in the thermodynamic limit, these 
expressions are identical (up to a sign) since then 

Let us show (2.22). By definition, (p" 'p ;ps)(x-y)  is the expectation of the following 
observable: 

A ( X , Y ) =  p :S (x -qz )p f6 (y -q j ) .  
' $ 1  

The classical mean is zero and the quantum correction is, using (A2.5) and (A2.6a), 

For the OCP, the potential energy is given by (2.10) provided that we take the classical 



2012 Ph A Martin and Ch Oguey 

charge density Q ( x )  = e(X, S ( x  - q l )  - p ) .  Therefore, up to o(h’) terms, we get 

(P‘2’P;P3(x - Y )  
= h2(A(x ,  y ) ~ ) = f h ~ V ‘ V ’ p ( ~ ’ ( ~ ,  y )  -&h2/3p(2’(~,  y ) V r V S 4 ( x  - y ) .  (A2.7) 

Since py’(x ,  y )  clusters fast, the dominant contribution in the asymptotic limit is 

(p‘2’p;p;)(x) == -&h2pp2VrV’~(x )  as 1x1 + 03. (A2.8) 

Let us now turn to (p‘2’plp;)(x - y ) ,  which is the average ofthe following expression: 

4% Y )  = c P:P:S(x - q t ) S ( y  - q,). 
1 + J  

Applying (A2.5) we have 

M x ,  Y ) )  = Sr,smP-1p(2)(X, y )  (A2.9) 

Up to a factor mp-’,  (A2.10) corresponds to the h2 correction of the two-point 
distribution function pg’ .  For an OCP, this function takes the following form [ 1 5 ]  

p$’(x, y )  = pi2 ’ (x ,  y )  + ( h 2 ~ / 1 2 m ) ~ 2 p i 2 ) ( x ,  y ) .  

Using (A2.6b) to treat the second term (A2.11) and inserting all that into (A2.1) gives 
1 2 r s ( 2 )  (p”’P;Pf)(X-y) = mP-’p:’(x, y)S,,, -ah V V p ( x ,  y )  

(A2.12) 

In order to handle the local singularity of the second derivative of the Coulomb 
potential, it is convenient to split the potential into a finite-range part df plus a 
continuous long-range part 4,: 

4 ( x )  = d,(x) + 4 f ( X ) .  

The correlations p‘’)(x, y . . .) vanish at coincident points so that a product such as 
V ‘ V ’ ~ f ( x - y ) p ‘ ” ’ ( x ,  y . .  .) is indeed integrable with respect to x. 

Making the potential energy explicit in (A2.12), we obtain 

(P‘2’P;Pf)(x -.Y) 
1 2 r s ( 2 )  

= 6,.,mp-’p‘*’(x, y )  - ( 1  - S , , ) z h  V V P ( x ,  Y )  

+Ah2@’( 1 d~(V‘V’4~)(x - z )p i3 ’ ( x ,  y ,  z )  +VrVS4,(x -y)p”’(x,  I.)) 

+ A h 2 p e 2  d z ( V ‘ V ’ ~ $ , ) ( x - z ) ( p ‘ ~ ’ ( x , y ,  z ) + ( S ( z - y ) - p ) p ” ’ ( x ,  y ) ) .  

(A2.13) 
I 
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Along the same lines, one can evaluate 

= ~ r , , m p p - l ( l +  p2h2(12m)-1((a2/aq:2) U ) )  

= m p p - ' 6 , ,  +&3e2h2 dz(V'VS4,)(x - z ) ~ ' ~ ' ( x ,  z )  5 
+ i$?e2h2  dz(VrVs4f)(x-  z )pa ' ( x ,  z ) .  

We combine (A2.13) and (A2.14) to obtain truncated correlations: 

i 
(P'*'PlPf)(X, Y )  -(P"'PlPf)P 

(A2.14) 

= 6r,smP-1P:z1(x, y )  (A2.15) 

( A2.16) 1 2 r s ( 2 )  +(6r,s-1)zh V V P (x ,Y) 

+i$h2e2 

+V'V"f(X-Y)P'*'(x, Y ) )  (A2.17) 

dz VrVs4f(x - z)R(xyz) (A2.18) 

dz V'V54,(x - ~ ) ( p ' ~ ' ( x ,  y ,  z )  - p p " ' ( x ,  z ) )  ( 5  

with 
R ( X ~ Z )  = p ( 3 ) ( ~ y ~ )  - P p : Z ) ( ~ ~ )  - P p ( 2 ) ( . ~ y ) +  s ( z - Y ) ~ ( ~ ) ( x ~ )  (A2.19) 

(A2.20) = p:"(xyz) + S ( y  - z ) +  S(y  - z)p:Z'(xy). 

(A2.15), (A2.16) and (A2.17) are integrable with respect to y for fixed x since the 
classical functions are. In the last term (A2.18), the contribution of the three-point 
truncated function (see (A2.20)) is integrable by the clustering (2.19). Moreover, the 
potential created by S(x) = pT(x, 0)+ S(x)p is 0 ( 1 y I - ~ )  because S carries no electrostatic 
multipoles of order 0, 1, 2. All this proves (2.21). 

We end this appendix by showing that (2.26) follows from the (classical) sum rules. 
The classical part of (2.26) is proportional to (A2.3). The h2 order contribution to 
(2.26) is made of two terms (up to constant factors) coming from (A2.17), (A2.18) and 
(A2.14). They are 

which is zero by combination of (A2.3) and (A2.4), and 

where (A2.4) has been used again. 
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Appendix 3 

Proof of (3.18) 

ih-'lAl-'(Ji[ T, Oil) 

= (e /m)2(p"'p '2) lA/ - '  dxf(x)V'(x'g(x) I 
+(e /m)2  C J dx(p'2'p;p4)(x)lAl-1 I dyf(x+y)V'(y 'g(y))+o(l)  

(A3.1) 

where o(1) involves terms which are bilinear in derivatives like 

/A/- '  1 dx(Vsf)(x)V'(x'g(x)), 

and vanish in the limit L, R + CO (these terms are the same as in the formulae (14) and 
(16) of [11). 

Now 

lim lim 1AI-l dx f(x)Vr(xrg(x)) = lim (2L)-' dtcp(t)(t4(t))' 
L-m R - E  L-CO J 

= lim 4 dtcp(Lt)(th(t))'= h ( l ) =  1 
L - a ,  I 

and since 

one has, for a fixed x, 

lim lim IAI-' i dyf(x+y)V'(y'g(y)) 
L-CO R - c c  

dtcp(Lt+x')(th(t)) '= S,,h(l) = Sr,'. 

(A3.2) 

(A3.3) 

(p'2'p;p4)(xr, f r )  being integrable in Z r  for x r  fixed, one can first take the limit R +CO, 

and then let L+m in the second term of the RHS of (A3.1). This leads as in lemma 
1 to 

and hence to (3.18). 
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Proof Of (3.20)-(3.21) 
Working out the commutator and the average according to (2.176) gives (with the 
abbreviated notation p ( l , 2 , .  . . , n )  = (xl . . . x,(p(")\x,  . . . x,)) 

ifi-'lAl-'([ U, J',]D,) 

e4 
m = - - \ A / - '  I d l  d2 d3[p(123)-p(12)p+6(23)p(12)](Vrd)(13) 

x f ( 1 ) x W )  -'b-' 5 d l  d2 pT(12)(Vr4)(12)f(l)xlg(l). (A3.4) 

The second term of (A3.4) vanishes since, by the antisymmetry of Vr4(12) and 
translation invariance 

m 

dX2 pT( 12) (vr4) (  12) = 0. (A3.5) 5 
Rearranging terms and using (A3.5) again gives 

ifi-'IAl-'([ U, JklDk)  

= -G ]AI-' 1 d l  d2 d3[p(23) - p 2 +  S ( 2 3 ) p ] ( V r ~ ) ( 1 3 ) f ( l ) ~ i g ( 2 )  (A3.6) 

(A3.7) 

m 

-{ 1AI-I I d l  d2 d3 r(l23)(Vr4)(13)f(l)x;g(2) m 

where 

(A3.8) 

With the definition (3.10) and a change of variables, (A3.6) is identical to (3.20). 
The term (A3.7) is 

e4 
- I dx dy r(Oxy)(V'd)(y)lhl-' 1 dz f(z)(x '+ z ')g(x+ z). m 

By (3.22) and (3.23) and dominated convergence (see (2.19)) it tends to 
- e 4 m - 1  J dy(Vr4)(y)  J dxx'r(0xy) as L, R +CO. (Notice that J dx  dy r(0xy)(Vr4)(y) = 
0 by the antisymmetry of (Vr4)(y)) .  

Finally one checks easily from (A3.8) that the sum rules (2.25) imply 5 dx x'r(0xy) = 
0, showing that (A3.7) does not contribute in the limit. 

Appendix 4 

We consider first the terms coming from the kinetic energy part of H ,  lAl-'(J:[ T, J k ] ) .  
It has one- and two-body contributions. The one-body terms vanish in the limit 
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L, R+co for the same reason as in theorem 3.2 of [l] part (a):  they all have a factor 
[AI-' 5 dx K ( x )  where K ( x )  involves derivatives of f (x) .  The two-body terms vanish 
because of time reversal invariance. 

The terms coming from the potential energy part of H have two- and three-body 
contributions which are computed according to (2.17b). The two-body part of 
lAl-'(JL[ U, Ji]) is 

(A4.1) 

(A4.3) 

Since 1Al-l dylf(y) -f(x - y)(  S M and limL+m limR,m 1AI-I (f(y) - f ( x  -y) )  dy = 0 
for fixed x, the terms (A4.1) and (A4.2) vanish in the limit by dominated convergence, 
and only (A4.3) contributes. 

The three-body part of lAl-'(JL[ U, J;]) is identically zero because of time-reversal 
invariance as in theorem 3.2 of [ l ]  part (a). 
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